Теория вероятностей. Решение задач (2020). Вероятности покерных комбинаций

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теория вероятностей

В группе 12 юношей и 8 девушек. По журналу наудачу отобрано 5 студентов. Найти вероятность того, что среди отобранных студентов ровно 3 девушек.

Количество отобранных студентов по журналу.

Вероятность выбрать наудачу девушку из всей группы.

Вероятность не выбрать наудачу девушку из всей группы (вероятность выбрать юношу).

k = 3 - количество отобранных девушек.

Вероятность того, что среди отобранных 5 студентов ровно 3 девушки.

В партии из 6 деталей имеется 4 стандартных. Наудачу взяли 3 детали. Найти вероятность того, что среди отобранных деталей хотя бы одна нестандартная.

Количество деталей в партии.

Количество стандартных деталей в партии.

Вероятность взять наудачу одну не стандартную деталь из партии.

Вероятность не взять наудачу одну не стандартную деталь из партии (вероятность взять наудачу одну стандартную деталь из партии).

Вероятность не взять наудачу две не стандартные детали из партии (вероятность взять наудачу две стандартные детали из партии).

Вероятность не взять наудачу три не стандартные детали из партии (вероятность взять наудачу три стандартные детали из партии).

Вероятность того, что среди отобранных деталей хотя бы одна нестандартная.

Станок состоит из 3 независимо работающих деталей. Вероятность отказа деталей соответственно равна 0,1; 0,2; 0,15. Найти вероятность поломки станка, если для этого достаточно отказа хотя бы одной детали.

Вероятность того, что откажет 1-я деталь.

Вероятность того, что откажет 2-я деталь.

Вероятность того, что откажет 3-я деталь.

Вероятность того, что 1-я деталь не откажет.

Вероятность того, что 2-я деталь не откажет.

Вероятность того, что 3-я деталь не откажет.

Вероятность поломки станка, если для этого достаточно отказа хотя бы одной детали.

Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, а для второго- 0,6. Найти вероятность того, что при одном залпе в мишень попадёт только один из стрелков.

Вероятность того, что первый стрелок попадёт по мишени.

Вероятность того, что второй стрелок попадёт по мишени.

Вероятность того, что первый стрелок не попадёт по мишени.

Вероятность того, что второй стрелок не попадёт по мишени.

Вероятность того, что при одном залпе в мишень попадёт только один из стрелков.

В ящике 6 приборов, из которых 4 работающих. Наудачу взяли 3 штуки. Найти вероятность того, что все взятые приборы окажутся работающими.

Количество взятых наудачу приборов.

Вероятность взять из ящика работающий прибор.

Вероятность не взять из ящика работающий прибор.

Воспользуемся формулой Бернулли:

k = 3 - количество работающих приборов, из взятых наудачу.

Вероятность того, все взятые приборы окажутся работающими.

В первой урне 4 белых и 1 чёрный, во второй урне 2 белых и 5 чёрных шаров. Из первой во вторую переложили 2 шара, затем из второй урны извлекли один шар. Найти вероятность того, что выбранный из второй урны шар - чёрный.

Определимся с возможными исходами событий, при перекладывании 2-х шаров из 1-й урны во 2-ю.

Н1 - гипотеза о том что из первой урны вытащили 2 белых шара.

Н2 - гипотеза о том что из первой урны вытащили 1 белый и 1 чёрный шар.

Вероятность достать из 1-й урны чёрный шар.

Вероятность достать из 1-й урны белый шар.

Вероятность гипотезы Н1.

Вероятность гипотезы Н2.

Теперь рассмотрим вероятность события когда случилась каждая из гипотез.

Вероятность вытащить из 2-й урны чёрный шар, если случилась гипотеза Н1.

Вероятность вытащить из 2-й урны чёрный шар, если случилась гипотеза Н2.

Вероятность того, что выбранный из второй урны шар - чёрный.

Вероятность того, что деталь изготовленная на заводе №1 отличного качества.

Вероятность того, что деталь изготовленная на заводе №2 отличного качества.

Вероятность того, что деталь изготовленная на заводе №3 отличного качества.

Вероятность вытащить из ящика, деталь изготовленную на заводе №1.

Вероятность вытащить из ящика, деталь изготовленную на заводе №2.

Вероятность вытащить из ящика, деталь изготовленную на заводе №3.

По формуле полной вероятности:

Вероятность того, что извлечённая наудачу деталь окажется отличного качества.

Имеется три партии изделий по 25 изделий в каждой. Число стандартных изделий соответственно равно 20, 21, 22. Из наудачу выбранной партии наудачу извлечено изделие, оказавшееся стандартным. Найти вероятность того, что оно было извлечено из 1 партии.

Вероятность того, что выбранная наудачу деталь из 1-й партии стандартная.

Вероятность того, что выбранная наудачу деталь из 2-й партии стандартная.

Вероятность того, что выбранная наудачу деталь из 3-й партии стандартная.

Вероятность наудачу выбрать одну из трёх партий.

По формуле Бейеса:

Вероятность того, что наудачу извлеченное изделие было извлечено из 1 партии.

Два автомата производят детали. Производительность второго автомата вдвое больше, чем первого. Первый автомат производит 80% деталей отличного качества, а второй - 90%. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена 1 автоматом.

теория вероятность нахождение выбор попадание

Вероятность того, что деталь, произведённая 1-м автоматом отличного качества.

Вероятность того, что деталь, произведённая 2-м автоматом отличного качества.

Так как производительность второго автомата вдвое больше, чем первого, то из 3-х условно изготовленных деталей две детали 2-го автомата и одна 1-го автомата.

Вероятность наудачу выбрать деталь, изготовленную 1-м автоматом.

Вероятность наудачу выбрать деталь, изготовленную 2-м автоматом.

По формуле Бейеса:

Вероятность того, наудачу взятая деталь отличного качества, оказалась деталь, произведенная 1-м автоматом.

Монету бросают 9 раз. Найти вероятность того, что «герб» выпадет: а.) менее 4 раз; б.) не менее 4 раз.

Вероятность того, что выпадет «герб».

Вероятность того, что «герб» не выпадет.

Воспользуемся формулой Бернулли:

Количество бросков монет.

Вероятность выпадения монеты «гербом» менее 4 раз.

k = 0, 1, 2, 3 - количество раз выпадения «герба».

Вероятность выпадения монеты «гербом» 0 раз из 9.

Вероятность выпадения монеты «гербом» 1 раз из 9.

Вероятность выпадения монеты «гербом» 2 раза из 9.

Вероятность выпадения монеты «гербом» 3 раза из 9.

Вероятность выпадения монеты «гербом» не менее 4 раз.

k = 4, 5, 6, 7, 8, 9 - количество раз выпадения «герба».

Вероятность выпадения монеты «гербом» 4 раза из 9.

Вероятность выпадения монеты «гербом» 5 раз из 9.

Вероятность выпадения монеты «гербом» 6 раз из 9.

Вероятность выпадения монеты «гербом» 7 раз из 9.

Вероятность выпадения монеты «гербом» 8 раз из 9.

Вероятность выпадения монеты «гербом» 9 раз из 9.

Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди 100 новорождённых окажется 50 мальчиков.

Вероятность рождения мальчика.

Вероятность не рождения мальчика (вероятность рождения девочки).

Количество новорождённых.

Количество рожденных мальчиков.

Воспользуемся локальной теоремой Муавра-Лапласа, т.к.

Табулированная чётная функция Гаусса,

По таблице находим значение

Вероятность того, что среди 100 новорождённых окажется 50 мальчиков.

Вероятность появления события в каждом из 100 независимых испытаний равна 0,8. Найти вероятность того, что событие появится: а.) не менее 75 раз и не более 90 раз; б.) не менее 90 раз.

Вероятность появления события.

Вероятность не появления события.

Общее количество испытаний.

Количество испытаний.

Количество испытаний.

По таблице находим значение

Вероятность того, что событие появится не менее 75 раз и не более 90 раз.

Количество испытаний.

Количество испытаний.

Воспользуемся интегральной теоремой Муавра-Лапласа т.к.

Табулированная нечётная функция Лапласа,

По таблице находим значение

Вероятность того, что событие появится не менее 90 раз.

Дискретная случайная величина задана законом распределения:

а.) построить многоугольник распределения и найти функцию распределения F(x);

б.) Найти М(Х), Д(Х), .

Математическое ожидание.

Дисперсия.

Средне квадратическое отклонение.

Задана плотность распределения f(x) непрерывной случайной величины Х.

а.) найти А и функцию распределения F(x);

б.) найти М(х), Д(х),

Размещено на Allbest.ru

Подобные документы

    Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.

    контрольная работа , добавлен 23.11.2014

    Анализ решений заданий по теории вероятности: определить вероятность того, что на верхних гранях двоих костей сумма очков не превосходит 12, определить среди лотерейных билетов вероятное количество выигрышных и количество бракованного товара в партии.

    контрольная работа , добавлен 27.12.2010

    Порядок определения степени вероятности нахождения значения из десяти возможных. Методика вычисления стандартных деталей среди проверенных с вероятностью 0.95. Оценка вероятности подъема в цене акций предприятия, а также получения прибыли на бирже.

    контрольная работа , добавлен 16.10.2011

    Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.

    реферат , добавлен 25.11.2013

    Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа , добавлен 18.09.2010

    Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция , добавлен 02.04.2008

    Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача , добавлен 19.03.2011

    Анализ случайных явлений, статистическая обработка результатов численных экспериментов. Способы вычисления наступления предполагаемого события. Решение задач, связанных с теорией вероятности. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа , добавлен 21.09.2013

    Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.

    контрольная работа , добавлен 17.03.2011

    Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Вероятность показывает возможность того или иного события при определенном количестве повторений. Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

Шаги

Вероятность единичного случайного события

  1. Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.

    • Например, невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.
  2. Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.

    • Пример 1 . В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2 . Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:

    • Пример 1 . Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Вероятность нескольких случайных событий

    1. При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.

      • Несколько выпадений пятерок называются независимыми событиями , поскольку то, что выпадет первый раз, не влияет на второе событие.
    2. Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий . Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.

      • Пример 1 . Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
        • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
      • Пример 2 . В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?
        • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
    3. Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим . Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5 . Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.

      • Пример 1 . Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
      • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

Вероятность того, что нужной деталь нет ни в одном ящике, равна:

Искомая вероятность равна

Формула полной вероятности.

Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий. Пусть известны вероятности этих событий и условные вероятности наступления события А при наступлении события H i .

Теорема. Вероятность события А, которое может произойти вместе с одним из событий , равна сумме парных произведений вероятностей каждого из этих событий на соответствующие им условные вероятности наступления события А.

Фактически эта формула полной вероятности уже использовалась при решении примеров, приведенных выше, например, в задаче с револьвером.

Доказательство.

Т.к. события образуют полную группу событий, то событие А можно представить в виде следующей суммы:

Т.к. события несовместны, то и события AH i тоже несовместны. Тогда можно применить теорему о сложении вероятностей несовместных событий:

При этом

Окончательно получаем:

Теорема доказана.

Пример. Один из трех стрелков производит два выстрела. Вероятность попадания в цель при одном выстреле для первого стрелка равна 0,4, для второго – 0,6, для третьего – 0,8. Найти вероятность того, что в цель попадут два раза.

Вероятность того, что выстрелы производит первый, второй или третий стрелок равна .

Вероятности того, что один из стрелков, производящих выстрелы, два раза попадает в цель, равны:

Для первого стрелка:

Для второго стрелка:

Для третьего стрелка:

Искомая вероятность равна:

ЛЕКЦИЯ 2.

Формула Бейеса. (формула гипотез)

Пусть имеется полная группа несовместных гипотез с известными вероятностями их наступления . Пусть в результате опыта наступило событие А, условные вероятности которого по каждой из гипотез известны, т.е. известны вероятности .

Требуется определить какие вероятности имеют гипотезы относительно события А, т.е. условные вероятности .

Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.

Эта формула называется формулой Бейеса .

Доказательство.

По Теореме умножения вероятностей получаем:

Тогда если .

Для нахождения вероятности P(A) используем формулу полной вероятности.

Если до испытания все гипотезы равновероятны с вероятностью , то формула Бейеса принимает вид:

Повторение испытаний.

Формула Бернулли.

Если производится некоторое количество испытаний, в результате которых может произойти или не произойти событие А, и вероятность появления этого события в каждом из испытаний не зависит от результатов остальных испытаний, то такие испытания называются независимыми относительно события А .

Допустим, что событие А наступает в каждом испытании с вероятностью Р(А)=р . Определим вероятность Р т,п того, что в результате п испытаний событие А наступило ровно т раз.

Эту вероятность в принципе можно посчитать, используя теоремы сложения и умножения вероятностей, как это делалось в рассмотренных выше примерах. Однако, при достаточно большом количестве испытаний это приводит к очень большим вычислениям. Таким образом, возникает необходимость разработать общий подход к решению поставленной задачи. Этот подход реализован в формуле Бернулли. (Якоб Бернулли (1654 – 1705) – швейцарский математик)

Пусть в результате п независимых испытаний, проведенных в одинаковых условиях, событие А наступает с вероятностью Р(А) = р , а противоположное ему событие с вероятностью .

Обозначим A i – наступление события А в испытании с номером i . Т.к. условия проведения опытов одинаковые, то эти вероятности равны.

Если в результате п опытов событие А наступает ровно т раз, то остальные п-т раз это событие не наступает. Событие А может появиться т раз в п испытаниях в различных комбинациях, число которых равно количеству сочетаний из п элементов по т . Это количество сочетаний находится по формуле:

Вероятность каждой комбинации равна произведению вероятностей:

Применяя теорему сложения вероятностей несовместных событий, получаем формулу Бернулли:

Формула Бернулли важна тем, что справедлива для любого количества независимых испытаний, т.е. того самого случая, в котором наиболее четко проявляются законы теории вероятностей.

Пример. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятность того, что в цель попали не менее трех раз.

Вероятность не менее трех попаданий складывается из вероятности пяти попаданий, четырех попаданий и трех попаданий.

Т.к. выстрелы независимы, то можно применить формулу Бернулли вероятности того, что в т испытаниях событие в вероятностью р наступает ровно п раз.

В случае пяти попаданий из пяти возможных:

Четыре попадания из пяти выстрелов:

Три попадания из пяти:

Окончательно, получаем вероятность не менее трех попаданий из пяти выстрелов:

Случайные величины.

Выше рассматривались случайные события, являющиеся качественной характеристикой случайного результата опыта. Для получения количественной характеристики вводится понятие случайной величины.

Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Определение. Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Определение. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

Закон распределения дискретной случайной величины.

Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.

Закон распределения может быть задан аналитически, в виде таблицы или графически.

Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения .

Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.

Пример. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятности числа попаданий и построить многоугольник распределения.

Вероятности пяти попаданий из пяти возможных, четырех из пяти и трех из пяти были найдены выше по формуле Бернулли и равны соответственно:

Аналогично найдем:

Представим графически зависимость числа попаданий от их вероятностей.

При построении многоугольника распределения надо помнить, что соединение полученных точек носит условный характер. В промежутках между значениями случайной величины вероятность не принимает никакого значения. Точки соединены только для наглядности.

Пример. Вероятность хотя бы одного попадания в мишень стрелком при трех выстрелах равна 0,875. Найти вероятность попадания в мишень при одном выстреле.

Если обозначить р – вероятность попадания стрелком в мишень при одном выстреле, то вероятность промаха при одном выстреле, очевидно, равна (1 – р ).

Вероятность трех промахов из трех выстрелов равна (1 – р ) 3 . Эта вероятность равна 1 – 0,875 = 0,125, т.е. в цель не попадают ни одного раза.

Получаем:

Пример. В первой коробке содержится 10 шаров, из них 8 белых; во второй коробке 20 шаров, из них 4 белых. Из каждой коробки наугад извлекли по одному шару, а затем из этих двух шаров наугад берут один шар. Найти вероятность того, что этот шар белый.

Вероятность того, что взятый из первой коробки шар белый - что не белый - .

Вероятность того, что взятый из второй коробки шар белый - что не белый -

Вероятность того, что повторно выбран шар, извлеченный из первой коробки и вероятность того, что повторно выбран шар, извлеченный из второй коробки, равны 0,5.

Вероятность того, что повторно выбран шар, извлеченный из первой коробки, и он белый -

Вероятность того, что повторно выбран шар, извлеченный из второй коробки, и он белый -

Вероятность того, что повторно будет выбран белый шар, равна

Пример. Имеется пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит цель при выстреле из винтовки с оптическим прицелом, равна 0,95, для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что цель будет поражена, если стрелок произведет один выстрел из наугад выбранной винтовки.

Вероятность того, что выбрана винтовка с оптическим прицелом, обозначим , а вероятность того, что выбрана винтовка без оптического прицела, обозначим .

Вероятность того, что выбрали винтовку с оптическим прицелом, и при этом цель была поражена , где Р(ПЦ/O) – вероятность поражения цели из винтовки с оптическим прицелом.

Аналогично, вероятность того, что выбрали винтовку без оптического прицела, и при этом цель была поражена , где Р(ПЦ/БO) – вероятность поражения цели из винтовки без оптического прицела.

Окончательная вероятность поражения цели равна сумме вероятностей Р 1 и Р 2 , т.к. для поражения цели достаточно, чтобы произошло одно из этих несовместных событий.

Пример. Трое охотников одновременно выстрелили по медведю, который был убит одной пулей. Определить вероятность того, что медведь был убит первым стрелком, если вероятности попадания для этих стрелков равны соответственно 0,3, 0,4, 0,5.

В этой задаче требуется определить вероятность гипотезы уже после того, как событие уже совершилось. Для определения искомой вероятности надо воспользоваться формулой Бейеса. В нашем случае она имеет вид:

В этой формуле Н 1 , Н 2 , Н 3 – гипотезы, что медведя убьет первый, второй и третий стрелок соответственно. До произведения выстрелов эти гипотезы равновероятны и их вероятность равна .

P(H 1 /A) – вероятность того, что медведя убил первый стрелок при условии, что выстрелы уже произведены (событие А).

Вероятности того, что медведя убьет первый, второй или третий стрелок, вычисленные до выстрелов, равны соответственно:

Здесь q 1 = 0,7; q 2 = 0,6; q 3 = 0,5 – вероятности промаха для каждого из стрелков, рассчитаны как q = 1 – p , где р – вероятности попадания для каждого из стрелков.

Подставим эти значения в формулу Бейеса:

Пример. Последовательно послано четыре радиосигнала. Вероятности приема каждого из них не зависят от того, приняты ли остальные сигналы, или нет. Вероятности приема сигналов равны соответственно 0,2, 0,3, 0,4, 0,5. Определить вероятность приема трех радиосигналов.

Событие приема трех сигналов из четырех возможно в четырех случаях:

Для приема трех сигналов необходимо совершение одного из событий А, В, С или D. Таким образом, находим искомую вероятность:

Пример. Двадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся знает ответы только на 35 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса одного билета или на один вопрос одного билета и на указанный дополнительный вопрос из другого билета.

В общей сложности имеется 40 вопросов (по 2 в каждом из 20 билетов). Вероятность того, что выпадает вопрос, на который ответ известен, очевидно, равна .

Для того, чтобы сдать экзамен, требуется совершение одного из трех событий:

1) Событие A – ответили на первый вопрос (вероятность ) и ответили на второй вопрос (вероятность ). Т.к. после успешного ответа на первый вопрос остается еще 39 вопросов, на 34 из которых ответы известны.

2) Событие В – на первый вопрос ответили (вероятность ), на второй – нет (вероятность ), на третий – ответили (вероятность ).

3) Событие С – на первый вопрос не ответили (вероятность ), на второй – ответили (вероятность ), на третий – ответили (вероятность ).

Вероятность того, что при заданных условиях экзамен будет сдан равна:

Пример. Имеются две партии однородных деталей. Первая партия состоит из 12 деталей, 3 из которых - бракованные. Вторая партия состоит из 15 деталей, 4 из которых – бракованные. Из первой и второй партий извлекают по две детали. Какова вероятность того, что среди них нет бракованных деталей.

Вероятность оказаться не бракованной для первой детали, извлеченной из первой партии, равна , для второй детали, извлеченной из первой партии при условии, что первая деталь была не бракованной - .

Вероятность оказаться не бракованной для первой детали, извлеченной из второй партии, равна , для второй детали, извлеченной из второй партии при условии, что первая деталь была не бракованной - .

Вероятность того, что среди четырех извлеченных деталей нет бракованных, равна:

Рассмотрим тот же пример, но несколько с другим условием.

Пример. Имеются две партии однородных деталей. Первая партия состоит из 12 деталей, 3 из которых - бракованные. Вторая партия состоит из 15 деталей, 4 из которых – бракованные. Из первой партии извлекаются наугад 5 деталей, а из второй – 7 деталей. Эти детали образуют новую партию. Какова вероятность достать из них бракованную деталь?

Для того, чтобы выбранная наугад деталь была бы бракованной, необходимо выполнение одного из двух несовместных условий:

1) Выбранная деталь была из первой партии (вероятность - ) и при этом она – бракованная (вероятность - ). Окончательно:

2) Выбранная деталь была из второй партии (вероятность - ) и при этом она – бракованная (вероятность - ). Окончательно:

Окончательно, получаем: .

Пример. В урне 3 белых и 5 черных шаров. Из урны вынимают наугад два шара. Найти вероятность того, что эти шары не одного цвета.

Событие, состоящее в том, что выбранные шары разного цвета произойдет в одном из двух случаев:

1) Первый шар белый (вероятность - ), а второй – черный (вероятность - ).

2) Первый шар черный (вероятность - ), а второй – белый (вероятность - ).

Окончательно получаем:

Биноминальное распределение.

Если производится п независимых испытаний, в каждом из которых событие А может появиться с одинаковой вероятностью р в каждом из испытаний, то вероятность того, что событие не появится, равна q = 1 – p.

Примем число появлений события в каждом из испытаний за некоторую случайную величину Х.

Чтобы найти закон распределения этой случайной величины, необходимо определить значения этой величины и их вероятности.

Значения найти достаточно просто. Очевидно, что в результате п испытаний событие может не появиться вовсе, появиться один раз, два раза, три и т.д. до п раз.

Вероятность каждого значения этой случайной величины можно найти по формуле Бернулли.

Эта формула аналитически выражает искомый закон распределения. Этот закон распределения называется биноминальным .

Пример. В партии 10% нестандартных деталей. Наугад отобраны 4 детали. Написать биноминальный закон распределения дискретной случайной величины Х – числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.

Вероятность появления нестандартной детали в каждом случае равна 0,1.

Найдем вероятности того, что среди отобранных деталей:

1) Вообще нет нестандартных.

2) Одна нестандартная.

3) Две нестандартные детали.

4) Три нестандартные детали.

5) Четыре нестандартных детали.

Построим многоугольник распределения.

Пример. Две игральные кости одновременно бросают 2 раза. Написать биноминальный закон распределения дискретной случайной величины Х – числа выпадений четного числа очков на двух игральных костях.

Каждая игральная кость имеет три варианта четных очков – 2, 4 и 6 из шести возможных, таким образом, вероятность выпадения четного числа очков на одной кости равна 0,5.

Вероятность одновременного выпадения четных очков на двух костях равна 0,25.

Вероятность того, что при двух испытаниях оба раза выпали четные очки на обеих костях, равна.

Индивидуальные задания по математике

Задача 1

В урне 6 белых шаров, 11 – черных. Одновременно наугад вынимают два шара. Найти вероятность того, что оба шара будут:

Решение

1) Вероятность того, что один из вытащенных шаров будет белым равна количеству шансов вытащить белый шар из всей суммы шаров, находящихся в урне. Этих шансов ровно столько сколько белых шаров в урне, а сумма всех шансов равна сумме белых и черных шаров.

Вероятность того, что второй из вытащенных шаров также будет белым равна

Так как один из белых шаров уже вытащен.

Таким образом, вероятность того, что оба вытащенных из урны шара будут белыми равна произведению этих вероятностей, так как эти возможности независимы:

.

или два черных шара:

.

3) Вероятность того, что оба вытащенных шара будут разных цветов это – вероятность того, что первый шар будет белым, а второй черными или того, что первый шар будет черным, а второй – белым. Она равна сумме соответствующих вероятностей.

.

Ответ: 1)

2) 3) .

Задача 2

В первой урне 6 белых шаров, 11 – черных, во второй – 5 белых и 2 – черных. Из каждой из урн наугад вынимают по шару. Найти вероятность того, что оба шара будут:

1) белыми, 2) одного цвета, 3) разных цветов.

Решение

1) Вероятность того, что оба шара будут белыми равна произведению вероятности того, что шар вытащенный из первой урны будет белым на вероятность того, что шар вытащенный из второй урны также окажется белым:


2) Вероятность того, что оба вытащенных шара будут одного цвета это – вероятность того, что оба шара будут либо белыми, либо черными. Она равна сумме вероятностей - вытащить два белых шара или два черных шара:

.

3) Вероятность того, что шар, вытащенный из первой урны будет белым, а шар, вытащенный из второй урны – черным, или наоборот – первый шар будет черным, а второй – белым, равна сумме соответствующих вероятностей:

Ответ: 1)

2) 3) .

Задача 3

Среди 24 лотерейных билетов – 11 выигрышных. Найти вероятность того, что по крайней мере один из 2-х купленных билетов будет выигрышным.

Решение

Вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным, равна разности между единицей и вероятностью того, что ни один из купленных билетов не будет выигрышным. А вероятность того, что ни один из купленных билетов не будет выигрышным равна произведению вероятности того, что первый из билетов не будет выигрышным на вероятность того, что и второй билет не будет выигрышным:

Отсюда, вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным:

Ответ:

Задача 4

В ящике 6 деталей первого сорта, 5 – второго и 2 – третьего. Наугад берутся две детали. Какова вероятность того, что они обе будут одного сорта?

Решение

Искомая вероятность это – вероятность того, что обе детали будут или 1-го или 2-го или 3-го сорта и равна сумме соответствующих вероятностей:

Вероятность, что обе взятые детали окажутся первого сорта:

Вероятность, что обе взятые детали окажутся второго сорта:


Вероятность, что обе взятые детали окажутся третьего сорта:

Отсюда вероятность вытащить 2 детали одного сорта равна:

Ответ:

Задача 5

В течение часа 0 ≤ t ≤ 1 (t – время в часах) на остановку прибывает один и только один автобус.

Решение

Автобус может прибыть в любой момент t, где 0 ≤ t ≤ 1 (где t – время в часах) или, что то же самое, 0 ≤ t ≤ 60 (где t – время в минутах).

Пассажир прибывает в момент t = 0 и ожидает не более 28 минут.

Возможности прибытия автобуса на станцию в течение этого времени или в течение остальных 32 минут равновероятны, поэтому вероятность того, что пассажиру, прибывшему на эту остановку в момент времени t = 0, придётся ожидать автобус не более 28 минут равна

.

Ответ:

Задача 8

Вероятность попадания первым стрелком в мишень равна 0,2 , вторым – 0,2 и третьим – 0,2. Все три стрелка одновременно произвели выстрел. Найти вероятность того, что:

1) только один стрелок попадёт в мишень;

2) два стрелка попадут в мишень;

3) хотя бы один попадет в мишень.

Решение

1) Вероятность того, что только один стрелок попадёт в мишень равна вероятности попадания в мишень первым стрелком и промаха вторым и третьим или попадания в мишень вторым стрелком и промаха первым и третьим или попадания в мишень третьим стрелком и промаха первым и вторым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый стрелок попадёт в мишень, а второй и третий – промахнутся равна произведению этих вероятностей:

.

Аналогичные вероятности попадания вторым стрелком в мишень и промаха первым и третьим, а также попадания третьим и промаха первым и вторым:

, .

Отсюда, искомая вероятность:


.

2) Вероятность того, что два стрелка попадут в мишень равна вероятности попадания в мишень первым и вторым стрелком и промаха третьим или попадания в мишень первым и третьим стрелком и промаха вторым или попадания в мишень вторым и третьим стрелком и промаха первым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый и второй стрелки попадут в мишень, а третий – промахнётся равна произведению этих вероятностей:

.

Аналогичные вероятности попадания первым и третьим стрелком в мишень и промаха вторым, а также попадания вторым и третьим и промаха первым.