Матрица антагонистической игры. Решение матричной игры. Основные понятия теории игр

8 февраля 2012

Пример. Расчет стропильной фермы. Требуется рассчитать и подобрать сечения элементов стропильной фермы промышленного здания. На ферме посередине пролета расположен фонарь высотой 4 м.

Пролет фермы L = 24 м; расстояние между фермами b = 6 м; панель фермы d = 3 м. Кровля теплая по крупнопанельным железобетонным плитам размером 6 X 1,6 м. Снеговой район III. Материал фермы марки Ст. 3. Коэффициент условий работы для сжатых элементов фермы m = 0,95, для растянутых m = 1.

1) Расчетные нагрузки. Определение расчетных нагрузок приведено в таблице.

Собственный вес стальных конструкций ориентировочно принят в соответствии с таблицей Ориентировочные веса стального каркаса промышленных зданий в кг на 1м 2 здания: фермы — 25 кг/м 2 , фонарь — 10 кг/м 2 , связи — 2 кг/м 2 .

Снеговая нагрузка для III района 100 кг/м 2 ; нагрузка от снега вне фонаря вследствие возможных заносов принята с коэффициентом с = 1,4 (смотрите ).

Суммарная расчетная равномерно распределенная нагрузка:

на фонаре q 1 = 350 + 140 = 490 кг/м 2 ;

на ферме q 2 = 350 + 200 = 550 кг/м 2 .

2) Узловые нагрузки. Вычисление узловых нагрузок приведено в таблице.

Узловые нагрузки Р 1 , Р 2 , Р 3 и Р 4 получены как произведение из равномерно распределенной нагрузки на соответствующие грузовые площади. К нагрузке Р 3 добавлена нагрузка G 1 складывающаяся из веса бортовой плитки 135 кг/м и веса остекленных поверхностей фонаря высотой 3 м, принимаемого равным 35 кг/м 2 .

Местная нагрузка Р м, показанная пунктиром на фигуре, возникает вследствие опирания железобетонных плит шириной 1,5 м в середине панели и вызывает изгиб верхнего пояса. Ее величина уже учтена при вычислении узловых нагрузок Р 1 — Р 4 .

3) Определение усилий. Определение усилий в элементах фермы производим графическим путем, строя диаграмму Кремоны-Максвелла. Найденные величины расчетных усилий записываем в таблице. Верхний пояс подвергается, кроме сжатия, также и местному изгибу.

Примечание. Расчетные напряжения в сжатых элементах фермы определены с учетом коэффициента условий работы (m — 0,95) с целью сопоставления во всех случаях с расчетным сопротивлением.

в первой панели

во второй панели

4) Подбор сечений. Подбор сечений начинаем с самого нагруженного элемента верхнего пояса, имеющего N = — 68,4 т и М2 = 3,3 тм. Намечаем сечение из двух равнобоких уголков 150 X 14, для которого по таблицам сортамента находим геометрические характеристики: F = 2 * 40,4 = 80,8 см 2 , момент сопротивления для наиболее сжатого (верхнего) волокна сечения W см 1 = 203 X 2 = 406 см 3 ; ρ = W/F = 406/80,8 = 5,05см, r х = 4,6 см; r у = 6,6см.

Здесь коэффициент η = 1,3 взят по табл. 4 приложения II. Так как е1 < 4, то проверку сечения производим по , определив предварительно φ вн по табл. 2 приложения II в зависимости от e 1 = 1,4 и = 65 (интерполяцией между четырьмя ближайшими значениями е 1 и λ): φ вн = 0,45.

Проверка напряжения

Проверку напряжения в плоскости, перпендикулярной плоскости действия момента, производим но формуле (28.VIII), для чего предварительно определяем коэффициент с по формуле (29.VIII)

Напряжение

Производим для подобранного сечения проверку элемента верхнего пояса В 4 . Усилие в элементе N = — 72,5 т, изгибающий момент отсутствует. Сечение из двух уголков 150 X 14. Гибкость

Коэффициенты: φ х = 0,83; φ у = 0,68.

Напряжение

Сохраняем принятое сечение пояса по конструктивным соображениям. Первая панель верхнего пояса подвергается только местному изгибу, вследствие чего сечение ее не должно определять выбора профилей уголков пояса, предназначенных в основном для работы на сжатие.

Поэтому, оставляя в первой панели те же два уголка 150 X 14, усилием их вертикальным листом 200 X 12, расположенным между уголками, и проверяем полученное сечение на изгиб.

Определяем положение центра тяжести сечения:

где z 0 и z л — расстояния до центров тяжести уголков и листа от верхней, кромки уголков;

Момент инерции

Момент сопротивления

Наибольшее растягивающее напряжение

Расчетные данные подобранного сечения верхнего пояса вписываем в таблице выше.

Для этого находим необходимые минимальные радиусы инерции (учитывая, что l x = 0,8l):

Равнобокие уголки, наиболее соответствующие полученным радиусам инерции, определяем по табл. 1 приложения III. Можно также использовать, данные табл. 32 для равнобоких уголков:

Этим данным наиболее близко отвечают уголки 75 X 6, имеющие r x = 2,31 см и r y — 3,52 см.

Соответственные значения гибкости будут равны:

Эти уголки и приняты для средних раскосов фермы и занесены в таблице выше. Хотя раскос Д 4 растянут, но, как указывалось выше, в результате возможной несимметричной нагрузки средние раскосы могут испытывать незначительное сжатие, т. е. изменить знак усилия. Поэтому они всегда проверяются на предельную гибкость.

Первый раскос имеет большое усилие, но меньше, чем нижний пояс; однако вследствие того, что он сжат, профиль нижнего пояса из уголков 130 X 90 X 8 для него недостаточен. Приходится вводить еще один, четвертый, профиль — уголок 150 X 100 X 10.

Наконец, для растянутого раскоса Д 2 получаются уголки 65 X 6. Эти же уголки используем для стоек (чтобы не вводить нового профиля). Проверка напряжений, приведенная в таблице выше, показывает, что отсутствуют как перенапряжения в элементах ферм, так и превышения предельных гибкостей.

«Проектирование стальных конструкций»,
К.К.Муханов

При подборе сечений элементов ферм необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей в целях упрощения прокатки и удешевления транспортировки металла (поскольку прокатка на заводах специализирована по профилям). Обычно удается рационально подобрать сечения элементов стропильных ферм, применяя уголки в пределах 5 — 6 различных калибров сортамента. Подбор сечений начинается со сжатого…

В критическом состоянии потеря устойчивости сжатого стержня возможна в любом направлении. Рассмотрим два главных направления — в плоскости фермы и из плоскости фермы. Возможная деформация верхнего пояса фермы при потере устойчивости в плоскости фермы может произойти так, как показано на фигуре, а, т. е. между узлами фермы. Такая форма деформации соответствует основному случаю продольного изгиба…

Выбор типа уголков для верхнего сжатого пояса стропильных ферм производится с учетом минимального расхода металла, обеспечения равноустойчивости пояса во всех направлениях, а также создания необходимой для удобства транспортировки и монтажа жесткости из плоскости фермы. Так как расчетные длины пояса в плоскости и из плоскости фермы во многих случаях значительно отличаются друг от друга (lу =…

Ферма — это система обычно прямолинейных стержней, которые соединяются между собой узлами. Это геометрически неизменяемая конструкция с шарнирными узлами (рассматриваются как шарнирные в первом приближении, так как жесткость узлов влияет на работу конструкции несущественно).

За счет того, что стержни испытывают только растяжение либо сжатие, материал фермы используется более полно, чем в сплошной балке. Это делает такую систему экономичной по затратам материала, но трудоемки в изготовлении, поэтому при проектировании нужно учитывать, что целесообразность использования ферм растет прямо пропорционально ее пролёту.

Фермы широко используются в промышленно-гражданском строительстве. Их применяют во многих строительных отраслях: покрытие зданий, мосты, опоры под линии электропередач, транспортные эстакады, грузоподъёмные краны и т.д.


Устройство конструкции

Основные элементы ферм — это пояса, из которых состоит контур фермы, а также решетка, состоящая из стоек и раскосов. Эти элементы соединяются в узлах путем примыкания или узловыми фасонками. Расстояние между опорами называется пролётом. Пояса ферм обычно работают на продольные усилия и изгибающие моменты (как и сплошные балки); решетка фермы принимает на себя в основном поперечную силу как и стенка в балке.

По расположению стержней фермы подразделяются на плоские (если все в одной плоскости) и пространственные. Плоские фермы способны воспринимать нагрузку только относительно собственной плоскости. поэтому их необходимо закреплять из своей плоскости с помощью связей или других элементов. Пространственные же фермы создаются, чтобы воспринимать нагрузку в любом направлении, так как создают жесткую пространственную систему.

Классификация по поясам и решеткам

Для разных видов нагрузок применяются различные виды ферм. Их классификаций множество, в зависимости от разных признаков.

Рассмотрим типы по очертанию пояса :

а — сегментные; б — полигональные; в — трапецеидальные; г — с параллельным расположением поясов; д — и — треугольные

Пояса фермы должны соответствовать статической нагрузке и виду нагрузки, которая определяет эпюру изгибающих моментов.

Очертания поясов во многом определяет экономичность фермы. По количеству используемой стали наиболее эффективна сегментная ферма, но она же является самой сложной в изготовлении.

По типу системы решетки фермы бывают :

а — треугольные; б — треугольные с дополнительными стойками; в — раскосные с восходящими раскосами; г — раскосные с нисходящими раскосами; д — шпренгельные; е — крестовые;

ж — перекрестные; з — ромбические; и — полураскосные

Особенности расчета и проектирования трубчатых ферм

Для производства использует сталь, толщиной 1,5 — 5 мм. Профиль может быть круглый или квадратный.

Трубчатый профиль для сжатых стержней наиболее эффективен с точки зрения расхода стали за счет благоприятного распределения материала относительно центра тяжести. При одинаковой площади сечения он имеет наибольший радиус инерции по сравнению с другими видами проката. Это позволяет проектировать стержни наименьшей гибкости и уменьшить расход стали на 20%. Также существенным преимуществом труб считается их обтекаемость. Благодаря этому давление ветра на такие фермы меньше. Трубы легко чистить и красить. все это делает трубчатый профиль выгодным для использования в фермах.

При проектировании ферм нужно стараться центрировать элементы в узлах по осям. Это делается, чтобы избежать дополнительных напряжений. Узловые сопряжения ферм из труб должны обеспечивать герметичное соединение (необходимо предотвратить возникновение коррозии во внутренней полости фермы).

Наиболее рациональными для трубчатых ферм являются бесфасоночные узлы с примыканием стержней решетки прямо к поясам. Выполняются такие узлы с помощью специальной фигурной резки концов, что позволяет минимализировать затрату труда и материала. Центрируют стержни по геометрическим осям. При отсутствии механизма для такой резки сплющивают концы решетки.

Такие узлы допустимы не для всех видов стали (только низкоуглеродистая или другая с высокой пластичностью). Если трубы решетки и поясов одинакового диаметра, то целесообразно соединять их на кольце.

Расчет стропильных ферм в зависимости от угла наклона крыши

Возведение при угле наклона крыши 22-30 градусов

Угол наклона крыши считается оптимальным для двускатной крыши 20-45 градусов, для односкатной 20-30 градусов.

Конструкция покрытий зданий состоит обычно из поставленных рядом стропильных ферм. Если они связаны между собой только прогонами, то система образуется изменяемая и может потерять устойчивость.

Чтобы обеспечить неизменяемость конструкции, проектировщики предусматривают несколько пространственных блоков из соседних ферм, которые скрепляются связями в плоскостях поясов и вертикальными поперечными связями. К таким жестким блокам крепятся другие фермы с помощью горизонтальных элементов, что и обеспечивает устойчивость конструкции.

Для расчета покрытия здания необходимо определиться с углом наклона кровли. Этот параметр зависит от нескольких факторов:

  • вид стропильной системы
  • кровельный пирог
  • обрешетка
  • материал кровли

Если угол наклона значительный, то использую фермы треугольного типа. Но они имеют некоторые недостатки. Это сложный опорный узел для которого необходимо шарнирное сопряжение, что делает всю конструкцию менее жесткой в поперечном направлении.

Сбор нагрузок

Обычно нагрузка, действующая на конструкцию, прикладывается в местах узлов, к которым крепятся элементы поперечных конструкций (например, навесной потолок или прогоны кровли). Для каждого вида нагрузки желательно определять усилия в стержнях отдельно. Виды нагрузок для стропильных ферм:

  • постоянная (собственная масса конструкции и всей поддерживаемой системы);
  • временная (нагрузка от подвесного оборудования, полезная нагрузка);
  • кратковременная (атмосферная, включающая снег и ветер);

Для определения постоянной расчетной нагрузки следует сначала найти грузовую площать, с которой она будет собираться.

Формула для определения нагрузки на кровлю:

F = (g + g1/cos a)*b ,

где g — собственная масса фермы и ее связей, горизонтальной проекции, g1 — масса кровли, а — угол наклона верхнего пояса относительно горизонта, b — расстояние между фермами

Исходя из этой формулы, чем больше угол наклона, тем меньше нагрузка, действующая на кровлю. Однако, следует учитывать, что увеличение угла влечет за собой и значительное повышение цены за счет увеличения объёма строительных материалов.

Также при проектировании крыши учитывается регион строительства . Если предполагается значительная ветровая нагрузка, то угол наклона закладывают минимальный и крышу делают односкатной.

Снег — нагрузка временная и загружает ферму только частично. Загружение половины фермы может быть очень невыгодным для средних расковов.

Полная снеговая нагрузка на кровлю рассчитывается по формуле :

Sр – расчетное значение снегового веса на 1 м2 горизонтальной поверхности;

μ – расчетный коэффициент, для учета наклона кровли (согласно СНиПу, равняется единице, если угол наклона меньше 25 градусов и 0.7, если угол от 25 до 60 градусов)

Давление ветра считается значимым только для вертикальных поверхностей и поверхностей, если их угол наклона к горизонту больше 30 градусов (актуально для мачт, башен и крутых стропильных ферм). Ветровая нагрузка как и остальные сводится к узловой.

Определение усилий

При проектирование трубчатых стропильных ферм следует учитывать их повышенную жесткость на изгиб и значительное влияние жесткости соединений в узлах. Поэтому для трубчатых профилей расчет ферм по шарнирной схеме допускается при отношении высоты сечения к длине не более 1/10 для конструкции, которые будут эксплуатироваться при расчетной температуре ниже -40 градусов.

В других случаях необходим расчет на изгибающие моменты в стержнях, возникающие из-за жесткости узлов. При этом можно осевые усилия вычислять по шарнирной схеме, а дополнительные моменты находить приближенно.

Инструкция для расчета стропильной фермы

  • определяется расчетная нагрузка (с использованием СНиП «Нагрузки и воздействия»)
  • находятся усилия в стержнях фермы (следует определиться с расчетной схемой)
  • вычисляется расчетная длина стержня (равняется произведению коэффициента приведения длины (0,8) на расстояние между центрами узлов)
  • проверка сжатых стержней на гибкость
  • задавшись гибкостью стержней, подобрать сечение по площади

При предварительном подборе для поясов значение гибкости принимается от 60 до 80, для решетки 100-120.

Подводим итоги

При грамотном проектировании стропильной системы можно значительно сократить количество используемого материала и сделать строительство кровли значительно дешевле. Для правильного расчета необходимо знать регион строительства, определиться с типом профиля, исходя из назначения и вида объекта. Применив правильную методику для нахождения расчетных данных, можно достигнуть оптимального соотношения между ценой возведения конструкции и ее эксплуатационными характеристиками.

Введите значения размеров в миллиметрах:

X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП 64.13330.2011 «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).

Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X .

Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП 64.13330.2011 «Деревянные конструкции», также следует учитывать СП 20.13330.2011 «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».

S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.

Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.

Навесы на металлическом каркасе облегчают быт. Они защитят автомобиль от непогоды, прикроют летнюю веранду, беседку. Заменят крышу мастерской или козырек над подъездом. Обратившись к профессионалам, вы получите какой угодно навес. Но многие и сами справятся с работой по монтажу. Правда, понадобится точный расчет фермы из профильной трубы. Не обойтись и без соответствующего оборудования, материалов. Конечно, также нужны навыки сварки и резки.

Каркасный материал

Основа навесов – сталь, полимеры, дерево, алюминий, железобетон. Но, чаще каркас составляют металлические фермы из профильной трубы. Этот материал полый, сравнительно легкий, но прочный. В разрезе имеет вид:

  • прямоугольника;
  • квадрата;
  • овала (а также полу- и плоскоовальной фигуры);
  • многогранника.

Сваривая из профильной трубы фермы, чаще выбирают квадратное или прямоугольное сечение. Эти профили легче в обработке.

Разнообразие трубных профилей

Допустимые нагрузки зависят от толщины стенок, марки металла, метода изготовления. Материалом зачастую служат качественные конструкционные стали (1-3пс/сп, 1-2пс(сп)). Для особых нужд используют низколегированные сплавы и оцинковку.

Длина профильных труб обычно составляет от 6 м на малых сечениях до 12 м – на больших. Минимальные параметры от 10×10×1 мм и 15×15×1,5 мм. С увеличением толщины стенок прочность профилей возрастает. Например, на сечениях 50×50×1,5 мм, 100×100×3 мм и свыше. Изделия максимальных размеров (300×300×12 мм и более) применимы скорее для промышленных сооружений.

Что касается параметров элементов каркасов, есть следующие рекомендации:

  • для малогабаритных навесов (до 4,5 м шириной) применяется трубный материал сечением 40×20×2 мм;
  • если ширина до 5,5 м, рекомендованы параметры 40×40×2 мм;
  • для навесов более значительных размеров советуют брать трубы 40×40×3 мм, 60×30×2 мм.

Что такое ферма

Фермой называют стержневую систему, основу строительной конструкции. Состоит она из прямолинейных элементов, соединяемых в узлах. Например, рассматривается конструкция фермы из профильной трубы, в которой отсутствует расцентровка стержней и нет внеузловых нагрузок. Тогда в ее составных частях возникнут лишь усилия растяжения и сжатия. Механика этой системы позволяет ей сохранять геометрическую неизменность при замене жестко крепящихся узлов на шарнирные.

Ферма состоит из следующих элементов:

  • верхний пояс;
  • нижний пояс;
  • стойка, перпендикулярная к оси;
  • подкос (или раскос), наклонный к оси;
  • вспомогательный опорный раскос (шпренгель).

Система решетки быть треугольной, раскосной, полураскосной, крестовой. Для соединения используются косынки, парные материалы, клепки, сварные швы.

Варианты крепления в узлах

Изготовление ферм из профильной трубы подразумевает сборку пояса с определенными очертаниями. По типу они бывают:

  • сегментные;
  • полигональные;
  • двускатные (или трапецеидальные);
  • с параллельными поясами;
  • треугольные (д-и);
  • с поднятым ломаным нижним поясом;
  • односкатные;
  • консоль.

Одни системы проще в монтаже, другие экономичнее по расходу материалов, третьи легче по устройству опорных узлов.

Основы расчета фермы

Влияние угла наклона

Выбор конструкции ферм навесов из профильной трубы связан с уклоном проектируемого сооружения. Есть три возможных варианта:

  • от 6°до 15°;
  • от 15° до 22°;
  • от 22° до 35°.

При минимальном угле (6°-15°) рекомендуются трапециевидные очертания поясов. Для снижения веса допускается высота в 1/7 либо 1/9 общей длины пролета. Проектируя пологий навес сложной геометрической формы, надо приподнять его в средней части над опорами. Воспользуйтесь фермами Полонсо, рекомендуемыми многими специалистами. Они представляют собой систему из двух соединенных затяжкой треугольников. Если нужно высокое сооружение, лучше выбрать многоугольную конструкцию с приподнятым нижним поясом.

Когда угол уклона превышает 20°, высота должна составлять 1/7 часть от общей длины пролета. Последний достигать 20 м. Для повышения конструкции нижний пояс делается ломаным. Тогда увеличение составит до 0,23 длины пролета. Для вычисления нужных параметров пользуются табличными данными.

Таблица определения уклона стропильной системы

При уклоне свыше 22° расчеты ведутся по специальным программам. Навесы такого рода чаще используются для кровли из шифера, металла и подобных материалов. Здесь применяют треугольные фермы из профильной трубы при их высоте в 1/5 от всей длины пролета.

Чем больше угол наклона, тем меньше на навесе будет скапливаться осадков, тяжелого снега. Несущая способность системы возрастает с повышением ее высоты. Для дополнительной прочности предусматривают добавочные ребра жесткости.

Параметры базовых углов

Чтобы понять, как рассчитать ферму из профильной трубы, обязательно выяснить параметры базовых узлов. Например, размеры пролета обычно должны быть указаны в техническом задании. Число панелей, их габариты назначаются предварительно. Вычислим оптимальную высоту (Н) в середине пролета.

  • Если пояса параллельные, полигональные, трапецеидальные, Н=1/8×L, где L – длина фермы. Верхний пояс должен иметь уклон около 1/8×L либо 1/12×L.
  • Для треугольного типа, в среднем, Н=1/4×L или Н=1/5×L.

Раскосы решетки должны иметь наклон примерно 45° (в пределах 35°-50°).

Воспользуйтесь готовым типовым проектом, тогда не придется делать расчет

Чтобы навес был надежным и долго прослужил, его проект требует точных вычислений. Уже после расчета закупаются материалы, в дальнейшем монтируется каркас. Есть более затратный путь – приобрести готовые модули и собрать сооружение на месте. Другой вариант сложнее – заняться подсчетами самостоятельно. Тогда понадобятся данные из спецсправочников по СНиП 2.01.07-85 (воздействия, нагрузки), а также СНиП П-23-81 (данные по стальным конструкциям). Нужно сделать следующее.

  1. Определиться со схемой блоков в соответствии с функциями навеса, углом наклона, материалом стержней.
  2. Выбрать параметры. Учесть зависимость между высотой и минимальным весом кровли, ее материалом и типом, уклоном.
  3. Рассчитать панельные размеры сооружения согласно удаленности отдельных частей, ответственных за передачу нагрузок. Определяется расстояние между соседними узлами, обычно равное ширине панели. Если размер пролета свыше 36 м, вычисляется строительный подъем – обратный погашаемый изгиб, воздействующий из-за нагрузок на конструкцию.

Среди способов расчета статически определимых ферм одним из простейших считается вырезание узлов (участков, где стержни соединены шарнирно). Другие варианты – метод Риттера, метод замены стержней Геннеберга. А также графическое решение путем составления диаграммы Максвелла-Кремоны. В современных компьютерных программах чаще применяется метод вырезания узлов.

Для человека, владеющего знаниями по механике и сопромату высчитать все это не так сложно. Остальным же стоит учесть, что от точности расчетов и величины погрешностей зависит срок службы и безопасность навеса. Возможно, лучше обратиться к специалистам. Или выбрать вариант из готовых проектных решений, куда просто подставить свои значения. Когда понятно, какого вида нужна стропильная ферма из профильной трубы, чертеж для нее наверняка найдется в интернете.

Значимые факторы выбора участка

Если навес относится к дому или другому зданию, на него потребоваться официальное разрешение, о чем тоже придется позаботиться.

Сначала выбирается участок, где будет располагаться сооружение. Что при этом учитывается?

  1. Постоянные нагрузки (фиксированный вес обрешетки, кровли и прочих материалов).
  2. Переменные нагрузки (воздействия климатических факторов: ветер, осадки, в том числе снег).
  3. Особый тип нагрузок (есть ли сейсмическая активность в регионе, штормы, ураганы и подобное).

Также важны характеристики грунта, влияния стоящих рядом зданий. Проектировщик должен учесть все значимые факторы и уточняющие коэффициенты, которые вносятся в алгоритм расчета. Если планируется провести вычисления своими силами, воспользуйтесь программами 3D Max, Аркон, Автокад или подобными. Есть вариант расчета в онлайн-версиях строительных калькуляторов. Обязательно выяснить для намеченного проекта рекомендуемый шаг между несущими опорами, обрешеткой. А также параметры материалов и их количество.

Пример программного расчета для навеса, крытого поликарбонатом

Последовательность работ

Сборку каркаса из металлических профилей должен проводить только специалист по сварочным работам. Это ответственное дело требует знаний и умелого обращения с инструментом. Надо не только понимать, как сварить ферму из профильной трубы. Важно, какие узлы правильнее собрать на земле, и лишь потом поднимать на опоры. Если сооружение тяжелое, для монтажа потребоваться техника.

Обычно процесс монтажа проходит в такой последовательности:

  1. Выполняется разметка участка. Устанавливаются закладные детали, вертикальные опоры. Нередко в ямы сразу помещают металлические трубы, а потом бетонируют. Вертикальность установки проверяется отвесом. Для контроля параллельности натягивается шнур или нить между крайними стойками, остальные выставляются по полученной линии.
  2. Продольные трубы сваркой фиксируют к опорам.
  3. На земле сваривают узлы и элементы ферм. С помощью раскосов и перемычек соединяют пояса конструкции. Потом блоки следует поднять на нужную высоту. Их приваривают к продольным трубам по участкам размещения вертикальных опор. Между фермами по скату вваривают продольные перемычки для дальнейшего крепления кровельного материала. В них проделывают отверстия под крепеж.
  4. Тщательно зачищаются все соединительные участки. Особенно верхние грани каркаса, куда в дальнейшем ляжет кровля. Поверхность профилей очищается, обезжиривается, обрабатывается грунтовкой и окрашивается.

Воспользовавшись готовым проектом, вы быстрее приступите к сборке навеса

Специалисты советуют выполнять столь ответственные работы только при наличии соответствующего опыта. Мало знать в теории, как правильно сварить ферму из профильной трубы. Сделав что-то неправильно, проигнорировав нюансы, домашний мастер рискует. Навес сложится и рухнет. Пострадает все, что под ним будет – авто или люди. Поэтому возьмите знания на вооружение!

Видео: как сварить ферму из профильной трубы